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Summary 
Damage classification plays a crucial role in the process of management in nearly every branch of 

industry. In fact, is becomes equally important as damage detection, since it can provide information of 
malfunction severity and hence lead to improvement of a production or manufacturing process. Within this 
paper selected supervised and unsupervised pattern recognition methods are employed for this purpose. The 
attention of the authors is given to assessment of selection, performance benchmarking and applicability of 
selected pattern recognition methods. The investigation is performed on the data collected using an 
experimental test grid and rolling element bearing with deteriorating condition of an outer race. 
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NADZOROWANY I NIENADZOROWANY PROCES UCZENIA W KLASYFIKACJI  

USZKODZEŃ ŁOŻYSK TOCZNYCH 
 

Streszczenie 
Klasyfikacja uszkodzeń odgrywa ważną rolę w procesie zarządzania w niemalże każdej gałęzi 

przemysłu. W rzeczywistości staje się ona równie istotna co samo wykrywanie uszkodzenia ponieważ 
pozwala określić stopień uszkodzenia, a co za tym idzie, poprawić efektywność zarządzania zakładem 
przemysłowym. W tym celu wykorzystano wybrane nadzorowane i nienadzorowane metody rozpoznawania 
wzorców. W artykule zwrócono uwagę na ocenę wyboru, porównanie wydajności oraz możliwości 
wykorzystania tych metod. Analiza przeprowadzona została na danych zgromadzonyh na eksperymentalnym 
stanowisku testowym, gdzie obserwowany jest stan łożyska tocznego z pogłębiającym się uszkodzeniem 
bieżni zewnętrznej. 

 
Słowa kluczowe: klasyfikacja uszkodzeń, rozpoznawanie wzorców, łożyska toczne, porównanie klasyfikatorów. 

 
1. INTRODUCTION 
 

Nowadays, modern industrial plants are more 
flexible and cost-effective. Most of them are 
equipped with systems for remote monitoring of 
critical plant parameters or even for remote 
controlling of all plant parameters. This includes 
production or manufacturing management and 
maintenance processes. The process of monitoring 
is performed using highly configurable supervisory 
control and data acquisition units (SCADA – data-
gathering orientated) and distributed control 
systems (process-orientated) which are interfaced to 
the plant via programmable logic controllers 
(PLCs) and measurement modules. Self-learning 
and easy-tuning PLCs operate to achieve plant 
demand targets. The controller settings, diagnostic 
and control signals are often available online via 
LAN and WAN computer networks, thus all of the 
information in the system might be processed by 
authorized personnel from any far place. 

Simultaneously, there is a growing number of 
methods that improves the diagnostic process at 
various stages of fault development. Due to the 
constant advancement of computational and storage 
capabilities of modern condition monitoring 
systems (CMS) many of the proposed methods 
became entirely automatic and can be implemented 
e.g. in online CMS [1]. For the purpose of condition 
monitoring of some groups of objects, e.g. rotating 
machinery, it is especially important to assess the 
severity of damage since early symptoms of fault 
do not necessarily require replacement of the 
elements, but it might suggest that the replacement 
will be mandatory in foreseeable future and 
appreciate action can be performed ahead of time. 
Therefore it is crucial to distinguish arising 
malfunction and provide higher effectiveness of 
process management. 

One may distinguish following failure modes, 
depending on the advancement of the systems used: 
(i) detection, (ii) isolation, (iii) assessment and (iv) 
classification [2].  
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The first one actives alarm once the established 
control limit is exceeded while the fault isolation 
provides a measured physical quantity that activates 
the alarm. These two modes are successfully 
implemented in many industrial applications, e.g. in 
SCADA system. Fault assessment informs of a 
weight factor for further operation – thus it is 
difficult to automatize and often rely on standards 
or opinion of the domain specialists. For the fault 
classification one estimates a reason for occurrence 
of malfunction and sorts a given set of information 
into particular category, like early warning, severe 
alarm, etc. The latter one may be performed using 
the theory of pattern recognition, which consists of 
a large group of techniques, including supervised 
and unsupervised ones, that derive the assessment 
on data with known and unknown class labels, 
respectively.  

The authors decided to present widely used 
statistical methods, i.e. nearest neighbor and nearest 
mean classifiers, logistic regression, linear and 
quadratic discriminant analyses, Parzen classifier 
and on the other hands, soft computing methods, 
including radial basis function neural network, as 
examples of a supervised methods, and c-means 
fuzzy logic and k-means, as unsupervised ones. 
These approaches proved their effectiveness in 
various engineering and, in particular, condition 
monitoring applications, as pointed throughout the 
article. Their advantages can be found in relatively 
simple application and low computation time, thus 
it can be assumed that they can be directly applied 
in state-of-the-art CMS. This comparison 
constitutes the next step in the investigation 
performed by the research team, that is 
development of CMS for commercial applications 
in highly varying operational conditions, that 
includes signal processing methodology [3], fault 
detection techniques [4] and structure design and 
reasoning of such systems [5-7]. 

In this paper the authors concentrate on fault 
classification of rolling element bearings (REBs) in 
different stage of its development. The study is not 
intended to be performed on the methodological 
aspects of particular techniques, but on their 
effectiveness for REB’s outer ring fault 
classification. The reason for investigation of REBs 
is that they are one of the most commonly used 
kinematic elements and are used nowadays in 
almost every industrial branch there is. 
Unfortunately, in the same time, according to the 
study mentioned in [8], they are also most fault 
susceptible – about 80% of total failures in industry 
are caused by these elements. 

This paper evaluates supervised and 
unsupervised classification methods considering 
uncertainty and imprecision of diagnostic 
reasoning. Uncertainty is considered by means of 

bias, stability, and linearity variance components. 
Nevertheless, the diagnostic reasoning process 
involves imprecision which is related to missing or 
incomplete knowledge about the object, related 
measurements (e.g. other bearings), historical data, 
and detail specification. The paper reviews a few 
clustering and classification algorithms to represent 
the uncertainty and impression of measurement 
data. 

The article is organized as follows. After the 
introductory part the pattern recognition methods 
are described in Section 2 with distinction to 
supervised and unsupervised ones. In Chapter 3 the 
case study is presented on the experimental test rig 
along with the data acquisition and feature 
extraction algorithms. The consecutive stages of the 
rolling bearing are introduces. Next, the validation 
of classification algorithms is presented and their 
effectiveness in terms of uncertainty and 
imprecision is discussed. Finally, the paper is 
concluded with the remarks for further research. 
 
2. PATTERN RECOGNITION 
 

Generally, as pattern recognition one may 
understand a group of methods that focus on 
classification of objects or observations in a number 
of categories or classes. In the literature (e.g. [9]) 
there is established general model of pattern 
recognition and can be simply applied to any type 
of method from this group. It is presented in Fig. 1. 
The model consists of the preprocessing module, 
the feature selection/extraction module and the 
classification module. The input data are collected 
in the initial stage, before the pattern recognition 
process and refers to measurement or observation 
on the object to be classified. It can be represented 
by e.g. images, acoustic or vibration signals, but it 
is highly desired to acquire data that can be 
understood as acceptable pattern of the observed 
phenomena. Any disturbances in the measurement 
may be filtered in the preprocessing stage, which in 
general aims at improvement of the data quality. It 
is also in charge of converting the raw 
measurements, which could come from different 
sources and be provided in different standards, into 
unified format suitable for further operations. 

The feature extraction/selection module 
prepares the feature space for use by classification 
module. The feature extraction/selection module 
prepares the feature space for use by classification 
module. The preparation involves selecting the best 
set of features coming from the preprocessing 
module and many kinds of linear or non-linear 
transformations of features carrying in order to 
obtain feature space with the most promising 
properties, i.e. that enhance classification and 
reduce overfitting of data [10] 
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Fig. 1. General pattern recognition structure 

 
There are more than a few methods introduced 

for statistical feature extraction and selection, e.g. 
principal component analysis (PCA), linear 
discriminant analysis or projection pursuit (for 
extraction) and sequential forward/backward 
floating search or exhaustive search (for selection) 
[11]. In case of vibration-based fault assessment, 
feature extraction stage may rely on e.g. time-series 
models, frequency or time-frequency analysis [12], 
while the selection of indicators is often dependent 
on the object to be observed and available methods 
for detection and identification of damage. 

The task of the classification module is to 
determine the probability of the object belonging to 
the particular class based on the vector of features 
provided in the previous step. 

In the presented example, the structure consists 
of two layers with training or testing data as inputs. 
In the first one the training data is accompanied 
with known output, and thanks to that the learning 
process may be executed. This type of proceeding 
is related to supervised methods. In the contrary, in 
unsupervised ones, the user provides as inputs 
examples of an unknown class and desire from the 
system to determine on its output to which of a set 
of classes the example belongs. In former mode, 
parameters and even structure of each module can 
change in order to provide better results, while in 
latter one, parameters and structure are constant [9]. 

 
2.1. Supervised methods 

 
In the supervised approach, the classification is 

performed based on the relationship between the 
input explanatory independent vector of features 
and the dependent class or cluster. As stated 
previously, each explanatory observation should be 
labeled with the corresponding class. Such training 
set can be used for teaching of a selected method 
until the relation between inputs and category is 
established. The obtained pattern is than used for 
the unseen testing data. The label are not known to 
classifier until the verification step, when the 
obtained results are compared with the actual 
indications.  

One of the most commonly used supervised 
classifier is a k-nearest neighbor (k-NN) one.  
It classifies observations by the distance estimation 
between the given observation and k nearest 
neighbors from the training set, regardless their 
class labels. The number of neighbors should be 

chosen to be odd for a two class problem, and in 
general not to be a multiple of a number of classes 
[13]. Next, out of these k samples, it identifies the 
number of instances that belong to each class. 
Finally, it assigns the observation to the class with 
the maximum number of samples assigned. The 
simplest version of the algorithm is for k=1, known 
as the nearest neighbor rule. Its efficiency for fault 
classification in mechanical engineering was 
verified in numerous studies, like for rolling 
element bearings [14], gears [15] or for various 
types of faults in induction motors [16]. 

The multinomial logistic regression deals with 
situation when the observed outcome of  the input 
variables is modelled in the training mode using a 
linear predictor function that uses a set of weights 
or regression coefficients associated with the 
outcome  that are linearly combined with input 
explanatory vector for observation [17]. The result 
of such combination is a value representing 
association of a particular observation with each 
class. In this case the predicted classification is 
based on the highest value obtained for each of the 
available classes or categories. The exemplary use 
of regression modeling was presented in [18], 
where in was used for fault estimation in wind 
turbines. 

Another interesting approach is normal 
density-based linear classifier, also called linear 
discriminant analysis (LDA). It can be used to 
describe a linear combination of explanatory data 
that are most suitable for distinguishing of two or 
more categories of objects [19]. Here, the predictor 
is solely based on the vector of observations x, 
hence outcomes y for a training set are not 
necessary. It is possible because the LDA approach 
assumes that the probability density functions have 
normal distributions and the same covariance. It can 
be shown, that the required probability depends 
only on the scalar product of difference between 
mean values and the input. This means that the 
probability of the input belonging to particular class 
is a function of a linear combination 
of its known characteristics. The probability factor 
is a foundation for the class justification. In the 
industrial applications it was used e.g. for 
classification of engine oils [20] or sensor failure in 
air handling units [21]. 

Similar to LDA, for the quadratic discriminant 
analysis (QDA) it is assumed that the observation 
vector is normally distributed for each category. 
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The difference between the two methods can be 
found for covariances, which are supposed to be 
different. For QDA the classification is made using 
the likelihood ratio, that calculates probability that a 
given observation belongs to particular class [11]. 
Good examples of industrial applications are 
provided in [22].  

Another classifier analyzed within this paper is 
called nearest mean or minimal distance. It provides 
a very simple optimal decision rule. To classify a 
feature vector, there is a need to measure the 
Euclidean distance between each observation to 
each of the mean vectors, and assign the input to 
the category of the nearest mean. Due to its 
simplicity it found a large variety of applications, 
especially in image processing [23] and fault 
assessment [24]. 

Parzen classification technique depend on the 
estimation of the probability for each class based on 
acquired explanatory examples. It integrates the 
contribution of the entire training set to the 
calculated output variable with modelling using a 
kernel function that is influenced by the smoothing 
parameter, i.e. the kernel width [25]. The examined 
unclassified variable is assigned to particular 
category based on the maximal posterior 
probability. The classification properties of this 
methods found its use, e.g. for self-adapting alarm 
level adjustment [26] or for structural fault 
identification [27]. 

An interesting approach is radial basis function 
neural network. The network is similar as for 
classical neural network and the inputs are formed 
using explanatory variables. At the input of each 
neuron, the distance between the neuron and the 
input vector is obtained. The outputs are calculated 
as weighted sum of the hidden layers and the unity 
bias. Most commonly, the basis function is the 
Gaussian bell one [28]. The neural networks were 
used for bearings diagnostics in [29], while in [30] 
the authors compared radial basis functions-based 
NN with back-propagation networks, showing their 
superiority based on the fast training time. 

 
2.2. Unsupervised methods 

 
Unsupervised methods are effectively used in 

operational diagnostics, when it is not feasible to 
explicitly and a priori categorize the potential 
malfunction classes. In such case, the class 
structure in the data needs to be discovered without 
the support of a priori knowledge. Unsupervised 
methods allow to transform and reduce the data 
using two main techniques: (i) subspace structure of 
data and its (ii) clustering characteristics. The first 
approach summarizes the objects using a smaller 
number of features than the original number of 

measurements; the second summarizes the data set 
using a smaller number of objects than the original 
number. Subspace structure is often interesting for 
visualization purposes. Clustering provides similar 
results and  interpretation, but also data reduction. 
When very large amounts of data are available, it is 
often more efficient to work with cluster 
representatives instead of the whole data set.  

There are different clustering methods, such as 
hierarchical clustering, k-mean, mixture of 
Gaussians, mixture of probabilistic principal 
component analysis or fuzzy c-means clustering 
[31]. For example, the k-mean clustering is 
performed in 4 steps: (i) assign each object 
randomly to one of the clusters, (ii) obtain the 
means of each clusters, (iii), reassign each 
observation to the cluster with the closest mean (iv) 
return to step ii until the means of the cluster do not 
change within the assumed tolerance. The 
unsupervised algorithms provide potential for state 
conditions reduction which is an essential stage in 
diagnostic reasoning from operational point of 
view. There are external and internal  approach to 
evaluate the clustering performance results [11]. An 
external measure is an agreement between two 
partitions where the first partition is the a priori 
known clustering structure, and the second results 
from the clustering procedure. Internal measure is 
used to measure the goodness of a clustering 
structure without external information. The optimal 
number of clusters is usually determined based on 
an internal validity measures reported for example 
by Rousseeuw [31] or Thalamuthu et al. [32]. 

Within this paper two k-mean-based clustering 
approaches are employed, namely fuzzy logic and 
crisp logic. In the first one the resulting clusters are 
best analyzed as probabilistic distributions [33] 
while the second can be referred as a hard 
assignment of labels. Liu et al. [34] provided an 
expert system based on fuzzy logic for detection of 
REBs faults. In [35] authors proposed to employ 
this method to integrate bearing fault indicators and 
therefore simplify the diagnostic process. 

 
3. CASE STUDY 

 
The performed comparison of the pattern 

recognition methods was performed on laboratory 
test rig that enabled acquisition of vibration signals 
of rolling element bearings in four conditions: 
while no fault is observed and with three levels of 
bearing degradation, each with deepening crack of 
the outer race. The preprocessing of  measurements, 
feature extraction and learning/classification stages 
were performed as discussed in the following 
subsections. 
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Fig. 2. Test rig used in the experiment 

 
3.1. Test rig 
 

In Fig. 2 one may find the test rig employed in 
the experiment. In consisted of three-phase 
asynchronous motor (marked as 1), that drove the 
mechanical system with rotational speed controlled 
by the inverter (2), power generator (3) imposing 
load to the system, two identical SKF 1205 EKTN9 
double-row ball bearings (4 and 5), out of which 
one (4) was under investigation with introduced 
incrementing defect of outer ring. 

The data was collected with 4-channel NI card 
9233 (6), with 24bit resolution, 50 kHz of sampling 
frequency and maximal range +/- 5V and a 
stationary computer (7). It was acquired using VIS-
311B accelerometer (8) with maximal range of 30 
kHz and sensitivity equal to 100mV/g. The 
accelerometer was placed perpendicularly to the 
axis of shaft on the upper surface of the bearing. 
The rotational speed was set to a constant value of 
45Hz. The power generator imposed load to the 
system equal to 130W and it remained constant 
during the entire enterprise. 

During the experiment for each of the fault 
stages there were acquired 60 measurements of 10s 
duration in order to provide frequency resolution 
0.1 Hz. It was captured with 25kHz sampling 
frequency. The faulty bearing was analyzed in four 
stages as described in Tab. 1. The damage 
enlargement was followed by the bearing mounting 
together with shaft alignment and the measurement. 
This procedure was repeated for each size of 
damage. 
 

Table 1. Fault development stages of 
examined rolling element bearing 

State Depth of crack [mm] 
Normal 0 
Acceptable 0.5 
Warning 1 
Alarm 1.5 

 

3.2. Preprocessing 
 

The preprocessing of acquired vibration signals 
followed methodology proposed in [36]. It was 
examined against human mind-wise valid vibration 
signal characteristics (from a continuously running 
machine) i.e.: mandatory visual continuity, required 
certain complexity (as opposed to a computer-
generated sine wave), rational amplitude levels, 
imperceptible quantization (for sufficiently long 
time period), sufficient sharpness of the time 
waveform shape (due to expectation of high 
frequency components), sudden signal changes 
present only to a degree allowable by the machine 
real behavior, expected mean value accuracy (zero 
in case of acceleration). 

In the discussed study, aforementioned 
properties of signals were satisfied and all of the 
collected signals were classified as correct and 
valid, and therefore accepted for further feature 
extraction. 
 
3.3. Feature extraction 
 

The existence of a localized fault in REB 
results in the periodical excitation of elements’ 
resonance frequencies. This manifests as amplitude 
modulation of the vibration signal (exemplary 
response was demonstrated in Fig. 3) once the 
rolling element encounters the defect (marked as 
‘Point of Entry’ and ‘Starting position of the defect’ 
on the on right and left plot of Fig. 3, respectively). 
The point of impact represents the moment of 
excitation caused by the rolling element leaving the 
area of defect. For numerous balls mounted in cage 
this phenomenon is observed periodically over the 
entire cycle. In order to reveal these symptoms for 
each signal the envelope  spectrum was obtained 
and the particular characteristic frequencies were 
observed. 
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Fig. 3. Experimentally measured acceleration response (right) of a ball bearing with an outer race defect (left) [37] 
 
 

The procedure for envelope spectrum 
designation was described in numerous literature 
positions e.g. in [35]. Firstly, in the performed 
analysis, the unwanted frequencies related to shaft’s 
rotating had to be cut-off using high-pass filtering. 
Secondly, the resulted signal was squared and the 
Fast-Fourier transform was computed in order to 
obtain envelope spectrum. The knowledge of 
geometrical parameters of the analyzed bearing 
allowed to identify four narrowband bearing 
indicators, i.e. ball-pass frequency of outer race 
(BPFO), ball-pass frequency of inner race (BPFI), 
ball spin frequency (BSF) and fundamental train 
frequency (FTF). The characteristic frequencies 
calculated for the given bearing were equal to 6.69 
for outer race, 6.31 for inner race, 5.11 for rolling 
elements and 0.49 for cage. Each of the above 
values should be understood as given multiplication 
of a rotational speed of driven shaft. 
 
3.4. Experimental validation 
 

The conducted laboratory experiment provided 
data to evaluate both the uncertainty and 
imprecision terms in condition monitoring. 
Supervised and unsupervised methods were used in 
order to classify rolling bearing technical condition, 
reduce the amount of processing data, and find 
optimal number of data clusters representing 
diagnostic states [31]. The Matlab toolboxes, PR-
Tools4.1 [38] and fuzzy clustering and data analysis 
[39], were used to cluster and classify the data sets. 

Supervised methods used the learning set 
consists of 240 samples representing four 
categories, i.e. normal, acceptable, warning, and 
alarm conditions. The testing set consists of 80 
samples, and it gives the learning/testing sets ratio 
as presented in Tab. 2. The applied algorithms and 
classification results are presented in Tab. 2. The 
correct classification performance indicator was 
used to validate the learning process based on the 
testing set. The classification was repeated 20 times 
for each algorithm to get a mean value which 
results from random shuffle of the samples for 
every classification case. 

 
Table 2. Clustering and classification methods 

Classifier type Method type 

Correct 
classification 
for testing set 
[%] 

Logistic 
regression 

supervised / 
parametric 93 

k-nearest 
neighbor 

supervised / 
non-parametric 87 

Normal 
densities based 
linear classifier 

supervised / 
parametric 98 

Normal 
densities based 
quadratic 
classifier 

supervised / 
parametric 97 

Parzen classifier supervised / 
non-parametric 96 

Nearest Mean 
Classifier 

supervised / 
non-parametric 88 

RBF Neural 
Network 

supervised / 
non-parametric 93 

c-means fuzzy 
logic 

unsupervised 89 

k-means unsupervised 94 
 
For both supervised and unsupervised cases,  

the classification and clustering performance were 
also evaluated visually with the used of 2D 
diagrams (Fig. 4) that show partial classification 
features (dimensions), i.e. BPFO, BPFI, BSF, FTF 
components. Normal conditions area was 
characterized by minimum variance, while the 
alarm condition corresponding to the greater 
variation. 
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Fig. 4. Diagram of example of classification results 
(two features are visualized on x and y axes from 

the four total features) 
 

 
Fig. 5. Diagram of raw data clusters (three features 
are visualized on particular axes from the four total 

features) 
 

Unsupervised clustering and classification 
process involves all data samples (i.e. 240 cases) to 
group data for a range of a priori given number of 
classes and it was performed in two steps. The 
optimal number of clusters were identified using 
cluster performance measures (Fig. 6), such as 
partition coefficient (PC), classification entropy 
(CE), Dunn index (DI), and alternative Dann index 
(ADI) [40]. The PC index indicates the average 
relative amount of membership sharing done 
between pairs of fuzzy subsets by combining into a 
single number, the average contents of pairs of 
fuzzy algebraic products [41]. The index values 
range in (1/c, 1), where c is the number of clusters. 
The closer to unity the PC, the smaller the sharing 
of the vectors in data set X among different 
clusters. The closer the value of PC to 1/c, the 
fuzzier the clustering is [42]. The PC index is a 

scalar measure of the amount of fuzziness in a 
given fuzzy set [39]. 

The DI is a metric type which is based on an 
internal evaluation scheme, where the results are 
based on the clustered data itself. This measure 
evaluates if sets of clusters are compact, with a 
small variance between members of the cluster, and 
well separated, where the means of different 
clusters are sufficiently far apart, as compared to 
the within cluster variance. For a given assignment 
of clusters, a higher Dunn index indicates better 
clustering (Fig. 5). 

Alternative Dunn Index [43] is a variation of 
DI index, the difference between DI and ADI is on 
the inter-cluster distance measurement. The DI 
index tries to find the minimum distance between 
elements belonging to different clusters, while the 
ADI index tries to replace this calculation with the 
triangular inequality [45]. Fig. 8 shows the final 
classification results in 2D dimensions including 
the countour lines of fuzzy membership functions. 
Two features are visualized on 2D plain from the 
four total features (Fig. 7). 
 
4. CONCLUSIONS 
 

The conducted feasibility study on use of 
supervised and unsupervised methods in order to 
classify and cluster vibration measurement 
confirmed potentials for such approach under 
laboratory conditions. Nevertheless, the clustering 
analysis shows to be very efficient in determining 
the number of bearing state conditions to be 
considered in operational diagnostics were 
multiple-sensors data, monitored object 
specification, operational history including past 
failure/malfunctions, and other relevant information 
incompleteness is considered as a typical situation. 

The supervised algorithms show good accuracy 
in the range between 88-97% considering the 
classification performance obtained with the use of 
testing set of four basic features of monitored 
rolling bearing, i.e. BPFO, BPFI, BSF, FTF 
frequency components. The unsupervised 
algorithms show also good accuracy in the range 
between 89-94% based on previously determined 
number of clusters equal to 4 condition states. This 
feasibility study allows to recommend all the 
classification methods to be used in a commercial 
diagnostic systems. Unsupervised methods are 
more suitable for operational data if it is not 
feasible to assign all malfunction classes to data 
clusters. 
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Fig. 6. Indices evaluating the cluster performance 

 

 
Fig. 7. Diagram of raw data clusters (two features are visualized on particular axes from the four total 

features) 
 

 
Fig. 8. Diagram of typical classification results 
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